Milestone Systems
XProtect® VMS Products 2017 R2

Failover clustering guide

XProtect Corporate
XProtect Expert
XProtect Professional+
Contents

About Windows Server Failover Clustering (WSFC) 4

System setup 5
 Minimum server requirements 5
 Planning checklist 6

SQL Server Always On Failover Cluster Instances (FCI) 8
 Prerequisites for clustering 9
 Enable failover clustering on each node 9
 Create the cluster 10

 Install SQL cluster failover 10

 Configure redundant XProtect management servers 12
 Install and configure XProtect management server on Node 1 13
 Install and configure XProtect management server on Node 2 14

 Set service dependencies 15

 Verify that failover clustering is working 16
Copyright, trademarks and disclaimer

Copyright © 2017 Milestone Systems A/S

Trademarks

XProtect is a registered trademark of Milestone Systems A/S.

Microsoft and Windows are registered trademarks of Microsoft Corporation. App Store is a service mark of Apple Inc. Android is a trademark of Google Inc.

All other trademarks mentioned in this document are trademarks of their respective owners.

Disclaimer

This text is intended for general information purposes only, and due care has been taken in its preparation.

Any risk arising from the use of this information rests with the recipient, and nothing herein should be construed as constituting any kind of warranty.

Milestone Systems A/S reserve the right to make adjustments without prior notification.

All names of people and organizations used in the examples in this text are fictitious. Any resemblance to any actual organization or person, living or dead, is purely coincidental and unintended.

This product may make use of third party software for which specific terms and conditions may apply. When that is the case, you can find more information in the file 3rd_party_software_terms_and_conditions.txt located in your Milestone system installation folder.
About Windows Server Failover Clustering (WSFC)

If your VMS environment requires continuous access that cannot tolerate hardware and software failures without any system interruption, then a viable system solution is Windows Server Failover Clustering (WSFC).

In some cases, for example a small retail shop, the operation of the VMS is not critical enough to warrant the cost of additional hardware. Instead, the shop accepts that failures can be addressed within a day or two by fixing or replacing the server. But, if your VMS environment requires high-availability, then WSFC can be a cost-effective way of achieving that.

WSFC provides an infrastructure that supports high-availability and disaster recovery of hosted server applications. A WSFC cluster is a group of independent servers that work together to increase the availability of applications and services. If a cluster node or service fails, the services that are hosted on that node can be automatically or manually transferred to another available node. This is known as failover.

This document provides an outline on creating a high availability environment with Microsoft Failover Clustering on two server nodes by:

- Preparing the operating system for failover clustering (see "Prerequisites for clustering" on page 8)
- Installing an SQL Server for failover clustering (see "Install SQL cluster failover" on page 10)
- Configuring redundant XProtect management servers (see "Configure redundant XProtect management servers" on page 12)
- Setting up service redundancies (see "Set service dependencies" on page 12)
- Verifying that the failover clustering works (see "Verify that failover clustering is working" on page 16)

This document provides a general outline of WSFC. Refer to the Microsoft documentation (https://msdn.microsoft.com/en-us/library/hh270278) for more detailed information.

Note: There are many ways to set up failover clustering. This document shows a simple example of one way: a Failover Cluster Instance (FCI) with shared storage.

We recommend you refer to the Microsoft documentation (https://msdn.microsoft.com/en-us/library/hh270278) for more information about failover clustering.

This document is primarily intended for:

- Surveillance system architects, designers and integrators
- Large-scale surveillance project consultants
- Installers
System setup

In XProtect Corporate, XProtect Expert and XProtect Professional+, you can achieve high availability for the management server and SQL Server by using Windows Server Failover Clustering (WSFC).

Hardware failures on a standalone server running the management server and SQL Server do not affect recordings or the recording server. However, hardware failures can result in downtime for operators that are not already logged into the clients. A WSFC environment will mitigate this downtime. There are a number of reasons why you would want to use a cluster:

- **Server failure** – If a server starts to have problems, you can run the management server and SQL Server from another node while you resolve the issue.

- **System updates and security patches** – Applying security patches on a standalone server can be time consuming, resulting in extended periods of downtime. By using failover clustering, you can apply system updates and security patches with minimal downtime.

- **Seamless connection** – Because clients and applications connect to a failover cluster by using the cluster IP address and cluster name, the connection to the management server and SQL Server is transparent and failover is seamless.

Minimum server requirements

The servers in a clustered environment must be identical in terms of hardware, operating system and software.

This document is based on an environment comprising the following components. Each component has their own set of minimum requirements.

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system</td>
<td>This document is based on clustering in a Microsoft® Windows Server 2016 environment.</td>
</tr>
<tr>
<td></td>
<td>Clustering is only available in the Standard and Datacenter editions of Windows Server.</td>
</tr>
<tr>
<td></td>
<td>Earlier versions of Windows Server (from 2003) also support Windows Server Failover Clustering (WSFC).</td>
</tr>
<tr>
<td>Storage</td>
<td>External storage for database files and video archives is required. Serial attached SCSI, Fiber Channel or iSCSI are recommended.</td>
</tr>
<tr>
<td>SQL Server</td>
<td>While Microsoft® SQL Express is bundled with the XProtect software, this SQL version is not supported for clustering.</td>
</tr>
<tr>
<td></td>
<td>This document is based on Microsoft® SQL Server 2016 Enterprise Edition x64.</td>
</tr>
<tr>
<td>XProtect software</td>
<td>This document is based on XProtect Corporate, XProtect Expert and XProtect Professional+.</td>
</tr>
</tbody>
</table>
Planning checklist

Before you create a failover cluster environment, you should have the following information for your environment.

The following tables provide examples of the information you require.

Servers

<table>
<thead>
<tr>
<th>Host name</th>
<th>Windows Version / Edition</th>
<th>Physical /Virtual</th>
<th>CPU</th>
<th>RAM</th>
<th>Domain</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster1</td>
<td>Windows Server 2016 Datacenter Edition x64</td>
<td>Virtual</td>
<td>2 CPU 2.54 GHz</td>
<td>8 GB</td>
<td>TESTDOMAIN.local</td>
<td>Cluster node 1</td>
</tr>
<tr>
<td>Cluster2</td>
<td>Windows Server 2016 Datacenter Edition x64</td>
<td>Virtual</td>
<td>2 CPU 2.54 GHz</td>
<td>8 GB</td>
<td>TESTDOMAIN.local</td>
<td>Cluster node 2</td>
</tr>
<tr>
<td>Shared Storage</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Shared storage for SQL Server data</td>
</tr>
</tbody>
</table>

Network

<table>
<thead>
<tr>
<th>Host name</th>
<th>Network</th>
<th>IP</th>
<th>Subnet</th>
<th>Gateway</th>
<th>Primary DNS</th>
<th>Secondary DNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>Public</td>
<td>177.16.0.213</td>
<td>255.255.0.0</td>
<td>177.16.0.1</td>
<td>177.16.0.200</td>
<td>193.168.0.200</td>
</tr>
<tr>
<td></td>
<td>Heartbeat</td>
<td>199.160.0.213</td>
<td>255.255.255.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iSCSI</td>
<td>10.0.0.213</td>
<td>255.0.0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster 2</td>
<td>Public</td>
<td>177.16.0.214</td>
<td>255.255.0.0</td>
<td>177.16.0.1</td>
<td>177.16.0.200</td>
<td>193.168.0.200</td>
</tr>
<tr>
<td></td>
<td>Heartbeat</td>
<td>199.160.0.214</td>
<td>255.255.255.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iSCSI</td>
<td>10.0.0.213</td>
<td>255.0.0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared Storage</td>
<td>Public</td>
<td>177.16.0.211</td>
<td>255.255.0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQL 2016 Cluster</td>
<td>Public</td>
<td>177.16.0.217</td>
<td>255.255.0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shared storage

<table>
<thead>
<tr>
<th>Storage name</th>
<th>Purpose</th>
<th>Volume</th>
<th>Path</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quorum</td>
<td>Cluster Witness Disk</td>
<td>Quorum</td>
<td>B:\</td>
<td>1GB</td>
</tr>
<tr>
<td>Data</td>
<td>SQL Server Disk</td>
<td>SQL</td>
<td>F:\</td>
<td>20GB</td>
</tr>
</tbody>
</table>

Cluster services

<table>
<thead>
<tr>
<th>Application</th>
<th>Software</th>
<th>Virtual Server Name</th>
<th>Virtual IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Server</td>
<td>SQL Server 2016 Enterprise Edition x64</td>
<td>SQL2016Cluster</td>
<td>177.16.0.217</td>
</tr>
</tbody>
</table>

Service accounts

<table>
<thead>
<tr>
<th>Domain account</th>
<th>Password</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TESTDOMAIN\sqlservice</td>
<td>***************</td>
<td>SQL Server service account</td>
</tr>
<tr>
<td>TESTDOMAIN\sqlagent</td>
<td>***************</td>
<td>SQL Server Agent service account</td>
</tr>
</tbody>
</table>
SQL Server Always On Failover Cluster Instances (FCI)

A Failover Cluster Instance (FCI) is a single instance of SQL Server that is installed across Windows Server Failover Clustering (WSFC) nodes. On the network, an FCI appears to be an instance of SQL Server running on a single computer, but the FCI provides failover from one WSFC node to another, if the current node becomes unavailable.

Windows Failover Cluster relies on shared storage. FCI supports storage solutions such as WSFC cluster disks (iSCSI, Fiber Channel, and so on) and server message block (SMB) file shares. When a SQL Server instance is installed on the cluster, Milestone and system databases are required to be on the shared storage. Note that this means that your storage is a single point of failure, so the databases should be backed up elsewhere.

Shared storage allows the cluster to move the SQL instance to any node in the cluster. This can be done either manually, or automatically if one of the nodes is having a problem. There is only one copy of the data, but the network name and SQL Server service for the instance can be made active from any cluster node.

A failover cluster gives you the ability to have all the data for a SQL Server instance installed in a shared storage that can be accessed from different servers. It will always have the same instance name, IP address and port and logins, therefore XProtect Corporate and XProtect Expert will always know where to access the data.

This document provides a general outline of FCI. Refer to the Microsoft documentation (https://msdn.microsoft.com/en-us/library/ms189134) for more detailed information.
Prerequisites for clustering

Windows Failover Cluster relies on shared storage. Make sure you have shared storage with at least two disks: a designated disk for quorum and another designated disk for SQL Server data.

Failover clustering also requires that you use an Active Directory domain.

Before setting up your failover cluster environment, make sure you have the component information as described in Planning checklist (on page 6).

Refer to the Microsoft documentation (https://msdn.microsoft.com/en-us/library/ms189910.aspx) for more detailed information on installation requirements for failover clustering.

Enable failover clustering on each node

On each node, do the following:

1. Log in to the Windows Server as Administrator.
2. Open the Server Manager.
3. Click Add roles and features.

 The Add Roles and Features Wizard appears.

 1. In the Before You Begin window, click Next.
 2. In the Installation Type window, select Role-based or feature-based installation and click Next.
 3. In the Server Selection window, select Select a server from the server pool and select the current server and then click Next.
 4. In the Server Roles window, click Next.
 5. In the Features window, select Failover Clustering.

 The Add features that are required for Failover Clustering window appears.

 Select Include management tools (if applicable) and click Add Features.

 Click Next.
 6. In the Confirmation window, click Install.
 7. When the installation is complete, click Close.

After you have prepared the operating system on all of the nodes, create the cluster (on page 9) on Node 1.
Create the cluster

On Node 1, run a validation test to ensure the server configuration can support clustering.

1. In the **Server Manager**, select **Tools > Failover Cluster Manager**.

 The **Failover Cluster Manager** appears.

2. In the **Actions** pane, click **Validate Configuration**.

 The **Validate a Configuration Wizard** appears.

3. In the **Before You Begin** window, click **Next**.

4. In the **Select Servers or a Cluster** window, click **Browse** and add the names of the nodes in the cluster. Click **Next**.

5. In the **Testing Options** window, select **Run all tests (recommended)** and click **Next**.

6. In the **Confirmation** window, click **Next**.

 The wizard validates the configuration. When it is done, the **Summary** window appears.

7. In the **Summary** window, verify that both nodes are validated. Select **Create the cluster now using the validated nodes** and click **Finish**.

 The **Create Cluster Wizard** appears.

8. In the **Create Cluster Wizard**, do the following:

 1. In the **Before You Begin** window, click **Next**.

 2. In the **Access Point for Administering the Cluster** window, enter the cluster name and click **Next**.

 3. In the **Confirmation** window, ensure that **Add all eligible storage to the cluster** is selected, and click **Next**.

 A new cluster is created.

 4. In the **Summary** window, verify that the cluster is created and then click **Finish**.

Install SQL cluster failover

To create a new SQL Server installation for the failover cluster, sign in to Node 1 using the domain Administrator credentials, and start the SQL Server Installer executable. This starts the **SQL Server Installation Center**.

The following steps provide an outline of this installation. Refer to the Microsoft documentation (https://msdn.microsoft.com/en-us/library/ms179530.aspx) for more detailed information.

1. On the **Installation** page, click **New SQL Server failover cluster installation**.

 The **Install a SQL Server Failover Cluster** window appears.

2. On the **Product Key** page, indicate whether you are installing a free edition of SQL Server, or whether you have a PID key for a production version of the product. Click **Next**.
3. On the **License Terms** page, read the license agreement, and then select the check box to accept the license terms and conditions. Click **Next**.

4. The **Global Rules** checker runs a discovery operation on your computer.

 The **Global Rules** checker verifies the system state of your computer before setup continues.

 If the checker identifies any missing product updates, on the **Product Updates** page, select the **Include SQL Server product updates** check box and click **Next** to continue.

5. The setup checker identifies potential problems that might occur while running setup. You must correct failures before setup. Click **Next** to continue.

6. On the **Feature Selection** page, select **Database Engine Services**.

 Sub-features are automatically selected.

 Click **Next**.

 The setup runs another set of rules that are based on the features you selected to validate your configuration.

7. On the **Instance Configuration** page, do the following:

 1. Specify a network name for the new SQL Server failover cluster. This is the name that is used to identify your failover cluster on the network.

 2. Specify a named instance, name it for example SQLCLUSTER.

 3. Click **Next**.

8. On the **Cluster Resource Group** page, you can specify the cluster resource group name where SQL Server virtual server resources will be located. Leave as default and click **Next**.

9. On the **Cluster Disk Selection** page, select the shared cluster disk resource for your SQL Server failover cluster.

 The cluster disk is where the SQL Server data will be put. You can select more than one disk.

 Click **Next**.

10. On the **Cluster Network Configuration** page, specify the network resources for your failover cluster instance.

 Specify a static IP type and IP address for your failover cluster. This is recorded under Network in Planning checklist (on page 6).

 Click **Next** to continue.

11. On the **Server Configuration** page under the **Service Accounts** tab, specify login accounts for SQL Server services. These are recorded under Service Accounts in Planning checklist (on page 6). Click **Next** to continue.

12. On the **Database Engine Configuration** page, define the following:

 1. Under the **Server Configuration** tab, define the SQL server administrator account and the server authentication mode.
2. Under the **Data Directories** tab, define the paths for the following. The path to where SQL data will be stored is recorded under Shared Storage in Planning checklist (on page 6).

- Data Root Directory
- User Database Directory
- User Database Log Directory

Backup Directory Distribution can be, for example:

<table>
<thead>
<tr>
<th>Disk</th>
<th>Volume</th>
<th>Usage</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Cluster Quorum Drive</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Data Root Directory</td>
<td>F:\MSSQL13.SQLCLUSTER\MSSQL\Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User Database Directory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backup Directory</td>
<td>F:\MSSQL13.SQLCLUSTER\MSSQL\Backup</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>User Database Log Directory</td>
<td>E:\MSSQL13.SQLCLUSTER\MSSQL\Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TempDB data directory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TempDB log directory</td>
<td></td>
</tr>
</tbody>
</table>

Click **Next**.

The System Configuration Checker runs another set of rules that are based on the settings you selected to validate your configuration.

13. On the **Ready to Install** page, click **Install**.

14. After installation, the **Complete** page provides a link to the summary log file for the installation. Click **Close** to complete the SQL Server installation.

Configure redundant XProtect management servers

Now that you have created a failover cluster using both Node 1 and Node 2 servers as cluster nodes, you must install the XProtect Management Server on both Node 1 and Node 2 and configure both XProtect Management Servers so that their services run in the cluster instead of on each individual server.

Note: As a prerequisite, each Management Server in the cluster must be installed under the domain Administrator service account.

You must do the following:

- Install and configure XProtect management server on Node 1 (on page 13)
- Install and configure XProtect management server on Node 2 (on page 14)
Install and configure XProtect management server on Node 1

1. On Node 1, run the Milestone XProtect VMS Products 2017 R2 System Installer.exe file.
 The installation files unpack. Depending on your security settings, one or more Windows® security warnings appear. Accept these and the unpacking continues.

2. After specifying the location of the license file and accepting the license terms, select Custom.
 A list of components to be installed appears. Apart from the management server, all elements in the list are optional.

3. Select all components EXCEPT the Recording Server and Smart Client. Click Continue.

4. In the Select Microsoft SQL Server window, select Use an existing SQL Server on the network and select the location of the Central SQL Server that you installed in Install new SQL Server failover cluster installation (see "Install SQL cluster failover" on page 10). Click Continue.

5. Select Create new database and click Continue.

6. In the Select Service Account window, select This account and enter the domain Administrator credentials. Click Continue and then click Install.

7. After the installation is complete, open the XProtect Management Client using the domain Administrator credentials.

8. From the Tools menu, select Registered Services.

9. In the Add/Remove Registered Services window, select each service in the list and click Edit.
 In the Edit Registered Service window, modify the URL address to use the Cluster Name. Update all of the services listed in the Add/Remove Registered Services window including the Service Channel http and https fields. The new URLs should look something like this:
 - Event Server: http://ClusterName.host:22331/
 - Report Server: http://ClusterName.host/Reporting/
 - Service Channel: http://ClusterName.host:80/ and https://ClusterName.host:443/

10. In the Add/Remove Registered Services window, click Network and in the Service address (LAN) field, modify the URL address to use the cluster service address and then click OK.

11. In the Add/Remove Registered Services window, click Close and exit the XProtect Management Client.

12. On Node 1, stop the management server service and the IIS service.
 To stop IIS, launch the Internet Information Services (IIS) Manager and navigate to the Web server node in the tree. In the Actions pane, click Stop.
Install and configure XProtect management server on Node 2

1. On Node 2, run the Milestone XProtect VMS Products 2017 R2 System Installer.exe file.
 The installation files unpack. Depending on your security settings, one or more Windows®
 security warnings appear. Accept these and the unpacking continues.

2. After specifying the location of the license file and accepting the license terms, select
 Custom.
 A list of components to be installed appears. Apart from the management server, all
 elements in the list are optional.

3. Select all components EXCEPT the Recording Server, Management Client and Smart Client.
 Click Continue.

4. In the Select Microsoft SQL Server window, select Use an existing SQL Server on the
 network and select the location of the Central SQL Server that you installed in Install new
 SQL Server failover cluster installation (see "Install SQL cluster failover" on page 10). Click
 Continue.

5. Select Use existing database and keep the existing data. Click Continue.

6. In the Select Service Account window, select This account and enter the domain
 Administrator credentials. Click Continue and then click Install.

7. After the installation is complete, open the XProtect Management Client using the domain
 Administrator credentials.

8. From the Tools menu, select Registered Services.

9. In the Add/Remove Registered Services window, select each service in the list and click
 Edit.
 In the Edit Registered Service window, modify the URL address to use the Cluster Name.
 Update all of the services listed in the Add/Remove Registered Services window
 including the Service Channel http and https fields. The new URLs should look something
 like this:
 - Event Server: http://ClusterName.host:22331/
 - Report Server: http://ClusterName.host:80/Reporting/
 - Service Channel: http://ClusterName.host:80/ and https://ClusterName.host:443/

10. In the Add/Remove Registered Services window, click Network and in the Service
 address (LAN) field, modify the URL address to use the cluster service address and then
 click OK.

11. In the Add/Remove Registered Services window, click Close and exit the XProtect
 Management Client.
Postrequisite
When this is done, modify all of the recording servers and failover servers to connect to the cluster service address for the management server by doing the following:

1. On the server where the Recording Server is installed, right-click the Recording Server icon in the tool bar and select Stop Recording Server Service from the menu.

2. After the Recording Server is stopped, again right-click the Recording Server icon in the tool bar and select Change Settings.

 The Recording Server Settings window appears.

3. Modify the address for the management server to connect to the cluster service, and click OK.

4. Right-click the Recording Server icon and select Start Recording Server service to start the Recording Server service again.

Set service dependencies
On Node 2, open the Server Manager, select Tools > Failover Cluster Manager.

1. In the Failover Cluster Management window, expand your cluster, right-click Roles and select Configure Role.

2. In the High Availability Wizard, click Next.

3. In the Select Role window, select Generic Service and click Next.

4. Select Milestone XProtect Management Server and click Next.

5. On the Client Access Point window, specify the server name for the management server generic service, and click Next.

6. On the Select Storage window, no storage is required for the service, click Next.

7. On the Replicate Registry Settings window, no registry settings should be replicated so click Next.

8. On the Confirmation window, verify that the cluster service is configured according to your needs and click Next.

 The management server is now configured as a generic service in the failover cluster. Click Finish.

Set dependencies
In the cluster setup, both the Milestone Event Server and the Milestone Data Collector should be set as a dependent services of the Milestone Management Server, so the Event Server and Data Collector stop when the Management Server is stopped.
Add the Milestone XProtect Event Server service as a resource to the Milestone XProtect Management Server Cluster service by doing the following:

1. Right-click the XProtect Server role and select Add Resource > Generic Service.
2. Select Milestone XProtect Event Server and then click Next.
3. Click Next to confirm and click Finish.

Verify that failover clustering is working

On both Node 1 and Node 2, open the Server Manager.

- If Node 2 is currently running the XProtect Server:
 2. In the tree, expand the cluster node and select Nodes.
 3. In the Nodes pane, select the server for Node 2.
 4. At the bottom of the window, open the Roles tab.
 5. Note that the Node 2 server is running the XProtect Server.
 6. Restart the Node 2 server.
 7. Note that the Management Server on Node 1 comes online.

- If Node 1 is currently running the XProtect Server:
 1. On Node 1, select Tools > Failover Cluster Manager.
 2. In the tree, expand the cluster node and select Nodes.
 3. In the Nodes pane, select the server for Node 1.
 4. At the bottom of the window, open the Roles tab.
 5. Note that the Node 1 server is running the XProtect Server.
 6. Restart the Node 1 server.
 7. Note that the Management Server on Node 2 comes online.
About Milestone Systems

Milestone Systems is a leading provider of open platform video management software; technology that helps the world see how to ensure safety, protect assets and increase business efficiency. Milestone enables an open platform community that drives collaboration and innovation in the development and use of network video technology, with reliable and scalable solutions that are proven in more than 150,000 sites worldwide. Founded in 1998, Milestone is a stand-alone company in the Canon Group. For more information, visit: http://www.milestonesys.com.